Programa de estudio

Datos generales de la Unidad de Aprendizaje

Identificación			
Nombre: Sistemas de Información Geográfica (SIG)	Etapa: Optativo Metodológica		
Clave:	Tipo de curso: Optativo		
Modalidad educativa: Presencial	Modalidad de enseñanza- aprendizaje: Curso -Taller		
Número de horas: 128 semestre (2-3-3-0)	Créditos: 8		
Secuencias anteriores: Ninguna Colaterales: Ninguna Posteriores: Teledetección	Requisitos de admisión: Ninguna		
Fecha de elaboración: junio de 2018	Fecha de aprobación:		

1. Justificación

El estudiante de Maestría en Sostenibilidad de los Recursos Agropecuarios de la opción terminal Agroecología o Aprovechamiento y conservación de los recursos fitogenéticos será capaz de identificar, analizar y plantear soluciones a las diversas problemáticas asociadas con los sistemas de producción agropecuaria y/o sus repercusiones en el medio ambiente, los ecosistemas y en la sociedad. En este marco, los estudiantes del posgrado podrán hacer uso e implementar un Sistema de Información Geográfica (SIG), que servirá de apoyo para proporcionar soluciones coherentes a numerosos problemas que se pueden presentar en el proceso de producción agrícola.

Además, la asignatura contribuirá en la comprensión de los ecosistemas y la planificación del proceso productivo en la agricultura.

2. Objetivo general

Facilitar los conceptos teóricos y metodológicos para diseñar e implementar un Sistemas de Información Geográfica (SIG) e introducir a los alumnos del posgrado en las aplicaciones como herramienta para el análisis de sostenibilidad de los recursos agropecuarios.

Objetivos específicos:

- Aportar a los alumnos elementos teóricos, metodológicos y herramientas técnicas para el análisis espacial a través de Sistemas de Información Geográfica (SIG).
- Desarrollar en el alumno el dominio en el manejo de la información geográfica, en especial en su aplicación para el análisis de la sostenibilidad de los recursos agropecuarios.
- Colaborar en la gestión de los recursos naturales encauzada a la mínima alteración de un ecosistema, con el objetivo de garantizar su subsistencia en condiciones adecuadas.
- Proponer proyectos eficientes de sostenibilidad agropecuaria aplicando aspectos teóricos y metodológicos como es el método de evaluación multicriterio con la implementación de un SIG.

3. Competencias a desarrollar

Conocimientos	Habilidades y destrezas	Valores
Cartografía	Diferenciar los tipos de cartografía temática.	Gusto por el estudio de las geotecnologías y su vital importancia en la investigación científica.
Sistemas de Información Geográfica (SIG)	Comprender y conocer los componentes de un SIG. Entender la variabilidad entre modelo raster y	Trabajar con información geográfica y diferentes softwares de SIG.

	modelo vectorial y su utilización para representar al mundo real.	
Manejo de la información	Realizar análisis y administrar los datos geográficos, mediante el trabajo con: Capas: la búsqueda, consulta y selección de datos. Tablas y gráficos: elementos y formato de una tabla.	Disposición para trabajar de manera individual y en equipo, y entender los geoprocesos en la implementación del SIG.
Aplicación de los SIG	Realizar proyectos reales cuyos resultados permitan asesorar a los organismos públicos y privados en el manejo sostenible de los recursos agropecuarios para lograr su conservación, recuperación y mejoramiento.	Entender la importancia del uso de las geotecnologías y la implementación de los Sistemas de Información Geográfica.

4. Contenido

Unidad 1. Introducción a los Sistemas de Información Geográfica

- Definición de un SIG
- Importancia un SIG
- Preguntas que responde un SIG
- Historia de los SIG
- Diferencia entre SIG y CAD

Unidad 2. Cartografía

- Mapa: definición, tipos y elementos básicos de un mapa
- Forma de la tierra: Datum y elipsoide
- Sistemas de coordenadas y proyección cartográfica
- Escala
- Símbolos

Unidad 3. Sistemas de Información Geográfica

- ¿Qué son los Sistemas de Información Geográfica?
- Componentes de un SIG
- Ofertas de software de SIG en el mercado mexicano
- Tipos de modelos de datos en los SIG: raster y vector
- Presentar las funciones y aplicaciones generales de un SIG
- Análisis espacial: algebra de mapas, modelado cartográfico y análisis raster
- Generación de cartografía y presentación de resultados
- Solución a problemas, aplicaciones y ejemplos prácticos

Unidad 4. Implementación de un SIG

- Metodología general de instrumentación de los proyectos de SIG
- Implementación de proyecto SIG

5. Orientaciones didácticas

- Presentar al inicio del curso el objetivo y contenido de la asignatura y su relación con el plan de estudios y las actividades de aprendizaje.
- Resaltar la importancia del uso de las geotecnologías e implementación de un Sistema de Información Geográfica para proporcionar soluciones coherentes a problemáticas que se presentan en relación con los recursos agropecuarios.
- Incidir en el modelo de datos (raster y vector) para la representación del mundo real.
- Resolver ejercicios con software de SIG, de manera individual y grupal por parte de los estudiantes.
- Realización de evaluaciones escritas y prácticas continúas.
- Utilización de software de SIG (QGIS, ArcMap y TerrSet) para implementar un Sistema de Información Geográfica.

6. Actividades de aprendizaje

Bajo la conducción del docente	Trabajo independiente del alumno
	 En el aula La resolución de situaciones problemáticas Examen escrito
 Clase por profesor Trabajo en equipo. Exposición de los alumnos Practicas con software de SIG Examen práctico 	 Fuera del aula Estudio bibliográfico continuo (bibliotecas, a través de Internet). Mapas conceptuales Trabajos de Investigación Realización de tareas escritas e individuales Síntesis de lecturas.
	Estudio individual.Proyecto de Investigación con SIG.

7. Evaluación

El curso será evaluado de manera "**continua**" atendiendo al logro del objetivo general. Por tanto, se plantea que la evaluación se haga sobre la base dos criterios: teórico y práctico.

La evaluación contempla lo siguiente:

	Total	100%
•	Proyecto	40%
•	Exposiciones y tareas	20%
•	Examen práctico	15%
•	Examen escrito	15%
•	Asistencia y participación en clase	10%

8. Bibliografía básica y complementaria

Bibliografía básica

Buzai, G. D., Cañada, M. R., Colsa, A., Fuenzalida, M., Moren, A., y Vidal, M. J. (2012). *Sistemas de información geográfica*: Aplicaciones en diagnósticos territoriales y decisiones geoambientales. España: Ra-Ma.

Harmon, J. E., & Anderson, S. J. (2003). The design and implementation of geographic information systems. John Wiley & Sons

Longley, P. (2005). *Geographic information systems and science*. John Wiley & Sons.

Moreno, A., Buzai, G.D., y Fuenzalida, M. (2017). Sistemas de Información Geográfica: Aplicaciones en diagnósticos territoriales y decisiones geoambientales. España Ra-Ma.

Olaya, V. (2014). Sistemas de Información Geográfica. Creative Common Atribución Pucha, F., Fries, A., Cánovas, F., Oñate, F., González, V., y Pucha, D. (2017).

Fundamentos de SIG: Aplicaciones con ArcGIS. Versión Kindle

Bibliografía complementaria

Eastman, JR. (2016). Guía para SIG y procesamiento de imagenes. Clark University. Canada

Moreno, A., Cañada, R., Cervera, B., Fernández, F., Gómez, N., Martínez, P., Vidal, M. J. (2006). Sistemas y análisis de la información geográfica: Manual de aprendizaje con ArcGIS. México, D.F: Alfaomega.

Ordóñez, C., y Martínez, R. (2003). Sistemas de información geográfica: Subtitulo aplicaciones prácticas con Idrisi32 al análisis de riesgos naturales y problemáticas medioambientales. Madrid: Ra-Ma.

Peña Llopis, J. (2005). Sistemas de información geográfica aplicados a la gestión del territorio: Entrada, manejo, análisis y salida de datos espaciales. Teoría general y práctica para ESRI ArcGIS9. Alicante, España: Editorial Club Universitario.

9. Perfil del profesor

El docente que imparta esta Unidad de Aprendizaje deberá contar con al menos el nivel de maestría con experiencia en Sistemas de Información Geográfica (SIG).